Development of Radiation-hard Electronics for the ATLAS Detector at LHC

Mark Oreglia, U. of Chicago with:

Marcel Demarteau, FNAL Lawrence Price, ANL

Overview

- Groups at UoC, ANL, FNAL request \$100K seed funding to perform R&D towards a proposal to upgrade the ATLAS experiment Tile Calorimeter electronics
- · Relies heavily on electronics groups:
 - J-F Genat at UoC Electronics Development Grp
 - Ray Yarema at FNAL Physics electronics group
 - Gary Drake at ANL HEP electronics group

Background

- The UoC Electronic Development group designed much of the on-board electronics for the ATLAS hadron calorimeter.
- The ANL HEP was heavily involved in calorimeter construction, and led the repairs of the LVPS system
- TileCal is a very important component!

Background (2)

- in 6-7 years much of the electronics must be replaced:
 - super-LHC will run at higher luminosity
 - thus higher radiation doses
 - there are no longer replacements for some crucial components
 - many commercial components with much better performance are available
 - LVPS design was not optimal

Why use UoC/FNAL/ANL \$?

- Many ATLAS institutions have expressed interest in participating in the upgrade
 - those that initiate R&D will be the major players...seed funding will really pay off
- The lead time is not very long...we need to start now!

R&D Needed

- Achieving radiation hardness for sLHC is a real challenge:
 - if a commercial rad-hard part exists, it usually costs aerospace prices (\$5000 for an FPGA!!!)
 - we cannot find some commercially rated rad-hard components
 - thus we need to perform our own tests and, in some cases, design custom chips
- We also need to incorporate modern communications, power, and trigger upgrades
- Payoff to greater community: LHC, spaceborne astrophysics, future HEP

Expertise

- UoC, ANL, and FNAL electronics groups have some unique areas of expertise
 - UoC: EDG designed originals and has tools and infrastructure for digital and analog front-end circuits
 - ANL: HEP electronics group also has excellent board design infrastructure and will focus on power distribution
 - also radiation test facilities
 - FNAL: has unique expertise in ASIC design which we will need for custom-chip solutions
 - FNAL fits in naturally to addressing this problem!
 - · also have radiation-tolerance expertise

Approach

- · First identify acceptable components
 - will require conducting radiation exposures
 - design PCBs to test functional radiation tolerance
- · Design new front-end circuits
 - radiation tolerant design (ie, reduncancy, voting...)
 - increase dynamic range
 - minimise connections, low-voltage levels
- redesign trigger logic
 - rad-hard communications a real challenge here

2-year Plan

- The project needs 1 FTE engineer for 2 years to get the answers we need before we can submit a new design
 - sets the scale of \$100K request
 - if we are only funded for 1 year: still very useful...gets us in the game, but will delay the redesign
- year-1: identify commercially available components & design radiation tolerant architectures; build testing boards
- year-2: conduct radiation tests; possibly design ASICs; design communications

The Team:

- University of Chicago
 - Mark Oreglia
 - Kelby Anderson
 - Jean-Francois Genat (EE)
 - Jim Pilcher
 - Fukun Tang (EE)
- · Fermilab
 - Marcel Demarteau
 - Ray Yarema (EE)
- Argonne
 - Lawrence Price
 - Gary Drake (EE)
 - Jimmy Proudfoot
 - Bob Stanek